Journal of Endocrinology

 Attenuation of PERK enhances glucose-stimulated insulin secretion in islets
 

PERK is a pancreatic endoplasmic reticulum (ER) kinase. Its complete deletion in pancreatic β cells induces insulin deficiency; however, the effects of partial Perk suppression are unclear. We investigated the effect of partial PERK suppression using the specific PERK inhibitors GSK2606414 and GSK2656157. Low-dose GSK2606414 treatment for 24 h enhanced glucose-stimulated insulin secretion (GSIS), islet insulin content and calcium transit in mouse (at 40 nM) and human (at 50–100 nM) pancreatic islets. GSK2606414 also induced the expression of the ER chaperone BiP and the release of calcium from the ER. When Bip expression was inhibited using a Bip siRNA, the GSK2606414-induced augmentation of the ER calcium level, islet insulin contents, glucose-stimulated cytosolic calcium transit and GSIS were abrogated. In both wild-type and insulin-deficient Atg7-knockout mice, 8 weeks of GSK2656157 treatment enhanced GSIS and improved hyperglycemia without affecting body weight. In conclusion, partial PERK inhibition induced BiP expression in islets, increased glucose-stimulated calcium transit and islet insulin contents and enhanced GSIS, suggesting that low-dose PERK inhibitors could potentially be used to treat insulin deficiency.